

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Minimizing Rental Cost under Specified Rental Policy in Two Stage Open shop Scheduling Problem

Deepak Gupta*1, Pooja Sharma²

*1 Prof. & Head, Department of Mathematics, Maharishi Markandeshwar University, Mullana, Haryana, India

² Research Scholar, Department of Mathematics, Maharishi Markandeshwar University, Mullana, Haryana, India

guptadeepak2003@yahoo.co.in

Abstract

This Paper is an attempt to study two stage open shop scheduling problem in which processing time of the jobs are given. The objective of the paper is to obtain an algorithm to minimize the rental cost of the machines in two stage open shop scheduling problem under specified rental policy. A numerical illustration is given to justify the proposed algorithm.

Keywords: Open shop scheduling, Rental policy, Processing time, Utilization time, completion time, Elapsed time.

Introduction

Scheduling is an important process widely used in manufacturing, production, management, computer science so on. Appropriate scheduling can reduce rental cost of machines and running time of machines. Optimal schedule for given sets of jobs can help's supervisors to effectively control job flows and provide valuable result. The earliest result for flowshop scheduling problem was introduced by Johnson [11] in order to minimize the total idle time of the machines. Further the work was developed by Jackson J.R [10], Maggu and Das [12], Yoshida and Hitomi [17], D.Rebaine[4], Anup[1], Gupta Deepak and singh T.P [6] by introducing different parameter such as Transportation time, breakdown interval, weightage, setup time separated from processing time etc. Open shop scheduling differ from flowshop scheduling in the sense that there is no restriction placed on the order of the machines i.e, operations can be performed in any order, first machine to second machine or second machine to first machine and not known in the advances. Maggu P.L and Harbans Lal [13] introduced the concept of n*2 Open shop scheduling problem including job-block criteria. Gupta Deepak and Singh T.P [6] studied n*2 Open shop scheduling problem to minimize the idle time of the machines in which processing times associated with their respective probabilities including job-block criteria. further work was extended by Gupta Deepak and Renuka [9] by associated transportation time and weightage of jobs. Bagga P.C and Narian L. [14] introduced the concept of two stage flowshop scheduling problem to minimize rental cost of the machines under predefined rental policy. Further Singh T.P. and Gupta Deepak [15] associated probabilities with processing time of the jobs in their studies to minimize the rental cost of machines including job-block criteria under specified rental policy. Work was extended by Gupta Deepak and Sharma S [7], Gupta D,Singla P and Sharma S [8] by introducing the concept of Breakdown interval and Set up times. Gupta Deepak and Shashi Bala [5] introduced the concept of two stage specially structured open shop problem to minimize the rental cost of machines including transportation time. In this paper, the concept of minimizing the rental cost in two stage flow shop scheduling problem made by Bagga P.C and Narian L.{14] has been applied in open shop scheduling problem under predefined rental policy. Thus the work studied here is wider applicable and more significant. Here we have developed an algorithm to minimize the rental cost of machine in two stage open shop scheduling problem.

Practical Situation

Open shop scheduling problems arise in several industrial situations. For example, consider a large aircraft garage with specialized work-centers. An airplane may require repairs on its engine and electrical circuit system. These two tasks may be carried out in any order but it is not possible to do these tasks on the same plane simultaneously. Other applications of open shop scheduling problems are in automobile repair, quality

Impact Factor: 1.852

ISSN: 2277-9655

control centers, semiconductor manufacturing, teacher-
class assignments, examination scheduling, and satellite
communications etc. In the era of globalization or global
uncertainties, to meet the challenges of the business, one
does not always have enough funds to invest in advanced
machines to update the technology. Under such
circumstances the machines has to be taken on rent.
Rental of machines is an affordable and quick solution
for having the equipment and up gradation to new
technology.

Notations

S	:Sequence of jobs 1,2,3,,n	
M_i	:Machine, j=1,2,3	
A_i	:Processing time of i th job on machine	
	M_1	
$\mathbf{B}_{\mathbf{i}}$:Processing time of i th job on machine	
	M_2	
C_{i}	:Rental cost per unit time of machine	
v	j.	
$t_1(S)$:Total completion time of last job on	
	first machine for sequence S.	
$t_2(S)$:Total completion time of last job on	
	second machine for sequence	S
CT(S)	:Completion time of first job on first	
	machine for sequence S.	
U(S)	:Utilization time of second machine for	
	sequence S _.	

Rental Policy

R(S)

The machines will be taken on rent as and when they are required and are returned as and when they are no longer required. i.e. the first machine will be taken on rent in the starting of the processing the jobs, 2nd machine will be taken on rent at time when 1st job is completed on the 1st machine.

:Rental cost for sequence S.

Problem Formulation

Let n jobs 1,2,.....,n be processed on two machines M_1 and M_2 in any order i.e. the jobs will be processed first on M_1 and then on M_2 or first on M_2 and then on M_1 under the specified rental policy . Let A_i be the processing time of i^{th} job on machine M_1 and B_i be the processing time of i^{th} job on machine M_2 Our aim is to find the optimal or near optimal sequence $\{S_k\}$ of the jobs which minimize the rental cost of machines.

Jobs	Machine M ₁	Machine M ₂
i	A_{i}	B_{i}
1	A_1	\mathbf{B}_1
2	A_2	B_2
3	A_3	B_3
-	-	-
n	A_n	B_n

TABLEAU-1

Mathematically, the problem is stated as:

Minimize $R(S_k) = \sum_{i=1}^{n} A_i(S_K) \times C_1 + U_2(S_K) \times C_2$ Subject to constraint: Rental Policy(P).

i.e, Our objective is to minimize rental cost of machines under pre-defined rental policy.

Assumption

- 1. Two jobs cannot be processed on a single machine at a time.
- 2. Jobs are independent to each other.
- 3. Per-emption is not allowed i.e. once a job started on a machine, the process on that machine cannot be stopped unless the job is completed.
- 4. Let n jobs be processed through two machines M_1 and M_2 in order M_1 to M_2 and in order M_2 to M_1 .
- 5. Machine break down is not considered.

Algorithm

Step1:For order $M_1 \rightarrow M_2$

 $\begin{aligned} & \text{Construct a Set } S_A \text{ of all processing time } A_i \text{ where } A_i \leq \\ & B_i \text{ and Set } S_A \text{' of all processing time } A_i \text{ where } A_i \geq B_i. \end{aligned}$

Step 2: Let S_1 denote a sub optimal sequence of jobs corresponding to non-decreasing time in set S_A , Similarly S_1 ' corrosponding to set S_A '.

Step 3: The augmented ordered sequence $J_1 = (S_1, S_1')$ are optimal/or near optimal sequence for processing the jobs on machine M_1 .

Step 4: For order $M_2 \rightarrow M_1$

Construct a Set S_B of all processing time B_i where $B_i \leq A_i$ and Set S_B ' of all processing time B_i where $B_i \geq A_i$.

Step 5: Let S_2 denote a sub optimal sequence of jobs corresponding to non-decreasing time in set S_B , Similarly S_2 ' corresponding to set S_B '.

Step 6: The augmented ordered sequence $K_1 = (S_2, S_2')$ are optimal/or near optimal sequence for processing the jobs on machine M_2 .

Step 7: Observe the processing time of 1^{st} job of J_1 on the first machine i.e, on M_1 . Let it be α . Similarly observe the processing time of 1^{st} job of K_1 on the first machine i.e, on M_2 Let it be β .

Step 8: Obtain all the jobs having processing time on M_1 greater than α . Put these jobs one by one in the first

ISSN: 2277-9655 Impact Factor: 1.852

position of the sequence $J_1.Keeping$ other jobs of the sequence J_1 in same order. Let these sequence be J_2 , $J_3....J_r.$ Similarly for order $M_2\to M_1$ sequences are K_2 , $K_3\ldots\ldots K_s$.

Step 9: Prepare in-out table for each sequence J_p (p=1,2,3....r) for order $M_1 \rightarrow M_2$ and K_q (q=1,2,3...s) for order $M_2 \rightarrow M_1$ and evaluate total completion time of last job of each sequence i.e, $t_1(J_p)$ & $t_2(J_p)$ on machine M_1 & M_2 respectively. Similarly $t_1(J_q)$ & $t_2(J_q)$ on machine M_2 & M_1 respectively.

Step 10: Evaluate completion time $CT(J_p)$ of first job of each sequence J_p on machine M_1 for order $M_1 \rightarrow M_2$, Similarly $CT(K_q)$ of first job of each sequence K_q on machine M_2 for order $M_2 \rightarrow M_1$ respectively.

Step 11: Compute utilization time U_p and U_q of second machine as follow:

$$\begin{array}{lll} U_p = & t_2(J_p) \text{ - } CT(J_p) & & p = 1,2,3.....r \text{ for order} \\ M_1 & \to M_2 & & \end{array}$$

$$M_1 \rightarrow M_2$$

 $U_q = t_2(K_q) - CT(K_q)$ $q = 1,2,3....s$ for order $M_2 \rightarrow M_1$

Step 12: Find min (U_p) , p=1,2,3....r. let it be corresponding to job p=m, then J_m is the optimal sequence for minimum rental cost for order $M_1 \rightarrow M_2$. similarly Find min (U_q) , q=1,2,3....s. let it be corresponding to job q=n, then k_n is the optimal sequence for minimum rental cost for order $M_2 \rightarrow M_1$

Step 13: Find rental cost for sequence J_m and K_n as follow:

$$\begin{split} R(J_m) &= t_1 \ (J_m) \times C_1 \ + \ U_m \times C_2 \\ R(k_n) &= t_1(K_n) \times C_2 \ + \ U_n \times C_1 \end{split}$$

Where C_1 and C_2 are the rental cost per unit time of machine M_1 and M_2 respectively.

Numerical illustration

Consider 5 jobs and 2 machines open shop problem to minimize the rental cost. The Processing time of these jobs are giveb as follow. Rental cost per unit time for machine M_1 and M_2 are 10 and 15 respectively.

Jobs	Machine M ₁	Machine M ₂
i	A_{i}	B_{i}
1	22	18
2	28	30
3	32	16
4	17	21
5	20	25

TABLEAU-2

Our objective is to obtain optimal schedule and order of machines to minimize the rental cost of the machines, under the rental policy P.

Solution: For order $M_1 \rightarrow M_2$

Jobs	Machine M ₁	Machine M ₂
i	A_{i}	B_{i}
1	22	18
2	28	30
3	32	16
4	17	21
5	20	25

TABLEAU-3

As per step 1:

Construct a set S_A and S_A'

$$S_A = \{ 28,17,20 \}$$
 $S_A' = \{ 22,32 \}$

As per step 2:

$$S_1 = \{ 4,5,2 \}$$
 $S_1' = \{ 1,3 \}$

As per step 3:

Augmented ordered sequence

$$J_1 = (S_1, S_1')$$

$$J_1 = \{ 4,5,2,1,3 \}$$

As per step 7, 8:

Other optimal sequences

$$J_2 = (5,4,2,1,3)$$

$$J_3 = (1,4,5,2,3)$$

$$J_4 = (2,4,5,1,3)$$

$$J_5 = (3,4,5,2,1)$$

As per step 9,10 and 11:

In-out table for sequence J_r (r=1,2,3,4,5) as follow:

For $J_1 = 4-5-2-1-3$

Jobs	Machine M ₁	Machine M ₂
4	0-17	17-38
5	17-37	38-63
2	37-65	65-95
1	65-87	95-113
3	87-119	119-135

TABLEAU-4

Total elapsed time on machine $M_1 = t_1(J_1) = 119$ Total elapsed time on machine $M_2 = t_2(J_1) = 135$ Utilization time of second machine $U(J_1) = 135-17$

= 118

For $J_2 = 5-4-2-1-3$

Jobs	Machine M ₁	Machine M ₂
5	0-20	20-45
4	20-37	45-66
2	37-65	66-96
1	65-87	96-114
3	87-119	119-135

TABLEAU-5

Total elapsed time on machine $M_1 = t_1(J_2) = 119$ Total elapsed time on machine $M_2 = t_2(J_2) = 135$ Utilization time of second machine $U(J_2) = 135-20$

For $J_3 = 1-4-5-2-3$

Jobs	Machine M ₁	Machine M ₂
1	0-22	22-40
4	22-39	45-61
5	39-59	61-86
2	59-87	87-117
3	87-119	119-135

TABLEAU-6

Total elapsed time on machine $M_1 = t_1(J_3) = 119$ Total elapsed time on machine $M_2 = t_2(J_3) = 135$ Utilization time of second machine $U(J_3) = 135-22$

= 113

For $J_4 = 2-4-5-1-3$

Jobs	Machine M ₁	Machine M ₂
2	0-28	28-58
4	28-45	58-79
5	45-65	79-104
1	65-87	104-122
3	87-119	122-138

TABLEAU-7

Total elapsed time on machine $M_1 = t_1(J_4) = 119$ Total elapsedtime on machine $M_2 = t_2(J_4) = 138$ Utilization time of second machine $U(J_4) = 138-28$

For $J_5 = 3-4-5-2-1$

Jobs	Machine M ₁	Machine M ₂
3	0-32	32-48
4	32-49	49-70
5	49-69	70-95
2	69-97	97-127
1	97-119	127-145

TABLEAU-8

Total elapsed time on machine $M_1 = t_1(J_5) = 119$ Total elapsed time on machine $M_2 = t_2(J_5) = 145$ Utilization time of second machine $U(J_5) = 145-32$

As per step 12:

Total utilization time of machine M_1 is fixed 119 units and minimum utilization time of machine M_2 , $U(J_4) =$ 110 units i.e, for sequence $J_4 = 2-4-5-1-3$

So optimal sequence is $J_4 = 2-4-5-1-3$

As per step 13:

Mnimum rental cost R(J)= $119 \times 10 + 110 \times 15$ =2840

 $Order \ M_2 \to M_1$

Jobs	Machine M ₂	Machine M ₁
i	\mathbf{B}_{i}	A_{i}
1	18	22
2	30	28
3	16	32
4	21	17
5	25	20

ISSN: 2277-9655

Impact Factor: 1.852

TABLEAU-9

As per step 4 and 5:

Construct a set S_B and S_B '

$$\begin{array}{ll} S_B = \{\ 18,16\ \} & S_B' = \{\ 30,21,25\ \} \\ S_2 = \{\ 3,1\ \} & S_2' = \{\ 4,5,2\ \} \end{array}$$

As per step 6:

Augmented ordered sequence

$$K_1 = (S_2, S_2')$$

 $K_1 = \{3,1,4,5,2\}$

As per step 7, 8:

Other optimal sequences

$$K_2 = (1,3,4,5,2)$$

$$K_3 = (4,3,1,5,2)$$

$$K_4 = (5,3,1,4,2)$$

$$K_5 = (2,3,1,4,5)$$

As per step 9,10 and 11:

In-out table for sequence K_s (s=1,2,3,4,5) as follow:

For $k_1 = 3-1-4-5-2$

Jobs	Machine M ₂	Machine M ₁
3	0-16	16-48
1	16-34	48-70
4	34-55	70-87
5	55-80	87-107
2	80-110	110-138

TABLEAU-10

Total elapsed time on machine $M_2 = t_1(k_1) = 110$ Total elapsed time on machine $M_1 = t_2(k_1) = 138$ Utilization time of second machine $U(k_1) = 138-16$

= 122

For $k_2 = 1-3-4-5-2$

5 2				
	Jobs	Machine M ₂	Machine M ₁	
	1	0-18	18-40	
	3	18-34	40-72	
	4	34-55	72-89	
	5	55-80	89-104	
	2.	80-110	110-138	

Total elapsed time on machine $M_2 = t_1(k_2) = 110$ Total elapsed time on machine $M_1 = t_2(k_2) = 138$ Utilization time of second machine $U(k_2) = 138-18$ For $k_3 = 4-3-1-5-2$

Jobs	Machine M ₂	Machine M ₁
4	0-21	21-38
3	21-37	38-70
1	37-55	70-92
5	55-80	92-112
2	80-110	112-140

TABLEAU-12

Total elapsed time on machine $M_2 = t_1(k_3) = 110$ Total elapsed time on machine $M_1 = t_2(k_3) = 140$ Utilization time of second machine $U(k_3) = 140-21$

= 119

For $k_4 = 5-3-1-4-2$

7-2				
	Jobs	Machine M ₂	Machine M ₁	
	5	0-25	25-45	
	3	25-41	45-77	
	1	41-59	77-99	
	4	59-80	99-116	
	2	80-110	116-144	

TABLEAU-13

Total elapsed time on machine $M_2 = t_1(k_4) = 110$ Total elapsed time on machine $M_1 = t_2(k_4) = 144$ Utilization time of second machine $U(k_4) = 144-25$

= 119

For $k_5 = 2-3-1-4-5$

Jobs	Machine M ₂	Machine M ₁
2	0-30	30-58
3	30-46	58-90
1	46-64	90-112
4	64-85	112-129
5	85-110	129-149

TABLEAU-14

Total elapsed time on machine M_2 = $t_1(k_5)$ =110 Total elapsed time on machine M_1 = $t_2(k_5)$ =149 Utilization time of second machine $U(k_5)$ =149-30

= 119

As per step 12:

Total utilization time of machine M_2 is fixed 110 units and minimum utilization time of machine M_1 , 119 units i.e, for sequence k_3 =4-3-1-5-2, K_4 =5-3-1-4-2, K_5 =2-3-1-4-5

So optimal sequence is K_3 , K_4 , K_5

As per step 13:

Mnimum rental cost R(K)= $110 \times 15 + 119 \times 10$ = 2840

Total rental cost when the order is from M_1 to M_2 for the sequence J_4 is 2840 units and for the sequence K_3 , K_4 , K_5 is also 2840 when order is M_2 to M_1 . Hence both order gives the same rental cost which is minimum.

Remark

1. The work may further be exerted for n jobs 3 machines open shop problem.

ISSN: 2277-9655

Impact Factor: 1.852

2. The study can further be extended by considering various parameters such as transportation time, job-block, setup time, breakdown intervals etc

References

- [1] **Anup** (2002), "On two machine flow shop problem in which processing time assumes probabilities and there exists equivalent for an ordered job block", JISSOR, Vol. XXIII No. 1-4, pp. 41-44.
- [2] **Bagga P C** (1969), "Sequencing in a rental situation", Journal of Canadian Operation Research Society, Vol.7, pp.152-153.
- [3] Chandrasekharan Rajendaran (1992), "Two-Stage Flowshop Scheduling Problem with Bicriteria", O.R. Soc., 43(9), pp. 871-84.
- [4] D. Rebaine, V.A. Strusevich(1998), "Twomachine open shop scheduling with special transportation times", CASSM R&D Paper 15, University of Greenwich, London, UK.
- [5] Gupta Deepak and Shashi Bala (2012), "
 Optimal Two Stage open Shop specially structured scheduling To Minimize the Rental Cost, processing time associated with probabilities including transportation time", IOSR Journal of mathematics(IOSR-JM),ISSN:2278-5728 Vol. 3, Issue 3, pp.01-06.
- [6] Gupta Deepak, Singh T.P et.al(2005), "On job block open shop scheduling the processing time associated with probability." J. Indian Soc. Stat. Opers. Res. Vol.XXVI,No.1-4.pp. 91-96.
- [7] Gupta Deepak & Sharma Sameer(2011), "Minimizing rental cost under specified Rental policy in Two Stage Flow shop, the Processing Time Associated With probabilities including Break-down Interval and Job-block Criteria, European journal of business and Management Vol 3, No 2, pp 85-103.
- [8] Gupta Deepak, Sharma Sameer and Singla Payal (2011), "Optimal Two Stage Flow Shop Scheduling To Minimize the Rental cost Including Jon Block Criteria, Set up times and Processing Times Associated With Probabilities", European journal of business and Management Vol 3, No 3 pp.268-286.
- [9] Gupta D, Renuka and Singla P(2012), "A Heuristic Approach For Two Stage Open Shop Scheduling With Transportation Time And Weightage Of jobs Including Job Block

[Gupta, 2(8): August, 2013]

ISSN: 2277-9655 Impact Factor: 1.852

- Criteria, the Processing Time Associated with Probabilities", International journal of scientific and Research publications, ISSN-2250-3153, vol. 2, issue 7.
- [10] Jackson, J. R. (1956), "An extension of Johnson's results on job scheduling", Nav. Res. Log. Quar., 3, pp 201-203.
- [11] **Johnson S M (1954),** "Optimal two and three stage production schedule with set up times included", Naval Research Logistic, Vol.1, No.1, pp. 61-64.
- [12] Maggu, P. L & Das G.(1977), "Equivalent jobs for job block in job sequencing", Opsearch, 14(4), pp.277-281.
- [13] Maggu P.I. and harbans lal (1989) "on job block open shop scheduling problem" PAMS Vol XXIX-pp- 45- 51.
- [14] Narian L & Bagga P.C. (2005), "Scheduling problems in rental situation", Bulletin f pure and Applied sciences:Section E.Mathematics and statistics, VOL.24, ISSN:0970-6577...
- [15] Singh T.P, Gupta Deepak (2006), "Minimizing rental cost in two stage flowshop, the processing time associated with probabilities including job-block", Reflections de ERA, Vol 1, issue 2.pp 107-120.
- [16] V.A. Strusevich (1997), L.A. Hall, "An openshop scheduling problem with a non-bottleneck machine", Oper. Res. Lett. 21 (1997)pp. 11–18.
- [17] **Yoshida & Hitomi (1979),** "Optimal two stage production scheduling with set up times separated", AIIE Transactions, II, pp. 261-263.